

Available online at www.sciencedirect.com

Journal of Pharmaceutical and Biomedical Analysis 31 (2003) 95–102

www.elsevier.com/locate/jpba

In vitro metabolism of the new anxiolytic agent, RWJ-52763 in human hepatic S9 fraction-API-MS/MS identification of metabolites

Wu-Nan Wu*, Linda A. McKown, Allen B. Reitz

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Welsh McKean Rds, PO Pox 776, Spring House, PA 19477, USA

Received 11 June 2002; received in revised form 9 September 2002; accepted 16 September 2002

Abstract

The in vitro metabolism of the anxiolytic agent, RWJ-52763 was studied after incubation with human hepatic S9 fraction in the presence of an NADPH-generating system. Unchanged RWJ-52763 (64% of the sample) plus six metabolites (M1–M6) were profiled, quantified, and tentatively identified on the basis of API-MS/MS data. The metabolic pathways for RWJ-52763 are proposed, and the two metabolic pathways are: (1) *N*/*O*-dealkylation, and (2) phenylhydroxylation. Pathway 1 formed a major *N*-dealkylated metabolite, *N*-desethoxy-RWJ-52763 (M1, 22% of the sample) and 2 minor *N*/*O*-dealkylated metabolites, *O*-desmethyl-RWJ-52763 (M2; 2%) and *N*,*N*-didesethoxymethyl-RWJ-52763 (M3; 3%). Pathway 2 produced two hydroxyphenyl metabolites, hydroxydifluorophenyl-RWJ-52763 (M4; 4%) and hydroxyphenyl-pyrido-RWJ-52763 (M5; 3%) in small amounts, and in conjunction with step 1 formed a minor *N*-desethoxymethyl-M4 (M6; 1%). RWJ-52763 is substantially metabolized by this human hepatic S9. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: RWJ-52763; Anxiolytic agent; Human hepatic S9; In vitro metabolism; API-MS/MS

1. Introduction

RWJ-52763, 6-*N*,*N*-dimethoxyethyl-1,2-dihydro-3-oxo-*N*-(2,6-difluorophenyl)pyrido[1,2*a*]benzimidazole-4-carboxamide (Fig. 1), is a new anxiolytic agent. It was synthesized by Johnson & Johnson Pharmaceutical Research & Development, LLC, Spring House, PA, USA [1–4]. RWJ-52763 and its analogs, RWJ-50172, RWJ- 51204, RWJ-51297, RWJ-51521, RWJ-52844, and RWJ-53050 bind with high affinity to the benzodiazepine site on GABA-A receptors [3,4]. The in vitro and in vivo metabolism of RWJ-50172 [5,6], RWJ-51204 [7,8], RWJ-51297 [9], RWJ-51521 [10], RWJ-52844 [11], and RWJ-53050 [12,13] in the rat, dog and human have been investigated and reported previously. The objectives of the current study were to investigate the in vitro metabolism of RWJ-52763 in human hepatic S9 fraction using LC/API-MS and MS/MS techniques. This resulted in the profiling, quantification, characterization, and identification of unchanged RWJ-52763 and

^{*} Corresponding author. Tel.: +1-215-628-5562; fax: +1-215-628-7822.

E-mail address: wwu@prius.jnj.com (W.-N. Wu).

^{0731-7085/02/\$ -} see front matter \odot 2002 Elsevier Science B.V. All rights reserved. PII: S 0 7 3 1 - 7 0 8 5 (0 2) 0 0 5 9 7 - 6

six metabolites. Preliminary results of this study have been reported previously for the identification of six metabolites [14].

2. Experimental section

2.1. Materials

RWJ-52763 was obtained from The CNS Research Team, Johnson & Johnson Pharmaceutical Research & Development, L.L.C. (Spring House, PA, USA) with purity > 97% (API-MS/MS/MS, HPLC). HPLC-grade solvents were obtained from the Fisher Scientific Co. (Fairlawn, NJ, USA) and glass-distilled solvents were purchased from Burdick and Jackson Laboratories, Inc. (Muskegon, MI, USA). The incubation components for S9, Tris, potassium chloride, magnesium chloride, NADP⁺ and glucose-6-phosphate, were purchased from Sigma (St. Louis, MO, USA).

2.2. Hepatic S9 fraction

The human hepatic S9 fraction was purchased from XenoTech, L.L.C. (Kansas City, KS, USA). It was obtained from a mixed gender pool of 15, Lot # 082897 A, 20 mg protein per ml.

2.3. Human hepatic S9 incubation

Chilled, freshly-made components were added to each flask (on ice) in the following order: 1.15%KCl in 0.05 M tris buffer (pH 7.4), 5 mM MgCl₂, 5 mM glucose-6-phosphate, 0.5 mM NADP⁺, test substrate (hepatic S9), and RWJ-52763 spike, to obtain a final volume of 5 ml and a RWJ-52763 concentration of 100 µg/ml. After the addition of the last component, each flask was incubated in a 37 °C Dubnoff Metabolic Shaker Incubator (Precision Scientific, Chicago, IL, USA). Samples were removed at 0 and 60 min. Control flasks were incubated without human subcellular fraction or human subcellular fraction only, to determine drug stability under incubation conditions.

2.4. Sample storage

Immediately following removal from the incubator, aliquots were transferred to pre-labelled storage vials, deactivated by the addition of ethyl acetate, and placed in a dry-ice/acetone bath to terminate and freeze the reaction. Sample were stored at approximately -20 °C.

2.5. Metabolite profiling, quantifying, and identification

Following ethyl acetate (2 ml) extraction of each ammonium hydroxide-basified (pH \sim 9) hepatic S9 incubate (1 ml), the extract residue was reconstituted in buffer [0.5 ml of acetonitrile/water (50/50, v/v) with 5 mM ammonium acetate buffer, pH 4.0] and then analyzed via 20 µl flow-injection using the PE Sciex API III-Plus MS (Perkin-Elmer Sciex Instuments, Thornhill, Ontario, Canada), a triple quadrupole mass spectrometer, interfaced to a Hitachi HPLC solvent delivery system (L-6200 A Intelligent pump) via an ionsprayer using nitrogen as a curtain and nebulizing gas and argon as a collision gas for MS/MS analysis. The mobile phase for this system was the same buffer as described for the residue reconstitution, at a flow rate of 0.1 ml/min. For each sample, the relative percentage of unchanged RWJ-52763 and metabolites were estimated using the integrated chromatograms generated by the Sciex API-III Q1 scan MS (TIC, total ion chromatogram). Unchanged RWJ-52763 and its metabolites were elucidated on the basis of MS. MS/ MS and MRM data.

3. Results and discussion

The in vitro biotransformation of RWJ-52763 was conducted in human hepatic S9 fraction. Unchanged RWJ-52763 (64% of the sample) plus six metabolites (M1–M6), were profiled, quantified, characterized, and tentatively identified in the 60 min incubate on the basis of API ionspray-MS and MS/MS data. The structures of RWJ-52763 and its metabolites, and their MS data are presented in Fig. 1, and the percent of unchanged

Fig. 1. Structures and MS/MS product ions for RWJ-52763 and metabolites.

RWJ-52763 and each metabolite are shown in Table 1. Control incubates revealed unchanged RWJ-52763 only. The representative metabolic profile using Q1 scan MS (TIC) for the 60 min

incubate of human hepatic S9 is presented in Fig. 2. Representative MS/MS spectra for unchanged RWJ-52763 and metabolites 1 are presented in Fig. 3. The isolation, profiling, quantification,

Table 1 Metabolism of RWJ-52763 in human hepatic S9

Analyte	Human S9 60 (min)	
RWJ-52763	64	
M1	22	
M2	2	
M3	3	
M4	4	
M5	3	
M6	1	

Data are derived from the integrated ion chromatograms via Q1 scan MS determinations.

characterization, and tentative identification of unchanged RWJ-52763 and each metabolite are discussed below.

Unchanged RWJ-52763 was identified from all incubates (0 and 60 min) by solvent extraction and MS and MS/MS techniques in comparison with authentic RWJ-52763 (Figs. 1–3). Mass spectral analysis of RWJ-52763 revealed intense protonated molecular and ammonia-adduct ions at m/z 473 ([M+H]⁺) and 490 ([M+NH₄]⁺), respectively (Figs. 1 and 2). MS/MS analysis of m/z 473 revealed prominent product ions at m/z 362 (2%), 344 (100%), 330 (1%), 312 (38%), 280 (5%), and 254 (3%) (Figs. 1–3). Unchanged RWJ-52763 was present in major quantities (64% of the sample) in the 60 min S9 incubate (Table 1).

Fig. 2. Q1 scan MS profiles of human hepatic S9 incubate of RWJ-52763.

Fig. 3. Representative API-MS/MS spectra of RWJ-52763 and metabolite 1.

W.-N. Wu et al. | J. Pharm. Biomed. Anal. 31 (2003) 95-102

Fig. 4. Proposed in vitro metabolic pathways for RWJ-52763 in human hepatic S9 fraction.

Metabolite 1 was present as a major metabolite (22% of the sample) (Table 1). The MS and MS/ MS ($[M+H]^+$) spectral data showed a protonated molecular ion at m/z 415 (1%) and diagnostic product ions at m/z 304 (6%), 286 (100%), 272 (2%), and 254 (30%) (Figs. 1–3). The MS data tentatively assigned M1 as *N*-desmethoxyethyl-RWJ-52763.

Metabolite 2 was present in minor amounts in the 60 min Incubate (2%) (Table 1). The structure of M2 was tentatively identified as *O*-desmethyl-RWJ-52763 on the basis of MS and MS/MS data. The MS data showed an apparent protonated molecular ion at m/z 459 (Figs. 1 and 2). MS/MS analysis of the protonated molecular ion revealed important product ions at 348 (3%), 330 (100%), 312 (330-H₂O, 4%), 298 (8%), and 254 (3%), together with a protonated molecular ion at m/z 459 (1%) (Fig. 1).

Metabolite 3 was identified in minor amounts (3%) (Table 1). The MS data for this metabolite gave an apparent protonated molecular ion at m/z 357 (Fig. 2), and MS/MS analysis of the protonated molecular ion (m/z 357) exhibited a protonated molecular ion and informative product ions at m/z 246 (14%), 228 (100%), and 196 (2%) with a

protonated molecular ion, m/z 357 (2%) (Fig. 1). MS data of M3 tentatively characterized the metabolite as N,N-didesmethoxyethyl-RWJ-52763.

Metabolite 4 was detected as a minor metabolite in the 60 min incubate (4%) (Table 1). The ionspray-MS and MS/MS analysis of this metabolite contained a protonated molecular ion at m/z489 in MS spectrum, and important product ions at m/z 473 (MH⁺ – CH₄, 2%), 344 (100%), 312 (344-MeOH, 8%), and 286 (2%), along with a protonated molecular ion at m/z 489 (1%) in MS/ MS spectrum (Fig. 1). On the basis of the MS data, metabolite 4 was tentatively proposed to be hydroxydifluorophenyl-RWJ-52763.

Metabolite 5 was present in minor quantities (3%) in 60 min S9 incubate (Table 1). This metabolite showed a protonated molecular at m/z 489 in ionspray-MS (Fig. 2), and significant product ions at m/z 473 (MH⁺ – CH₄, 3%), 360 (100%), 328 (360-MeOH, 5%), and 286 (328-CH₂= CO, 2%), together with a protonated molecular ion at m/z 489 (2%) (Fig. 1). The structure of metabolite 5 was tentatively proposed to be OH-benzimidazole-RWJ-52763.

Metabolite 6 was detected in trace amounts in the 60 min incubate (1%). An apparent protonated molecular ion at m/z 431 showed in MS spectrum indicated a molecular weight of 16 amu more than M1. This could be explained by the formation of phenolic group at the phenyl moiety of M1. MS/ MS analysis of protonated molecular ion (m/z431) provided informative product ions at m/z 302 (49%), 286 (100%), 270 (286-CH₄, 2%), 254 (286-MeOH, 20%), and 228 (286-CH=CH₂OMe, 5%), along with a protonated molecular ion (2%) (Fig. 1).

4. Conclusion

The in vitro metabolism of RWJ-52763 was conducted in the human hepatic S9 fraction. Unchanged RWJ-52763 plus six metabolites were profiled, quantified, characterized, and tentatively identified on the basis of MS data. API ionspray-MS and MS/MS exhibited apparent protonated molecular ions, and prominent, as well as important, fragment product ions for the structural elucidation of RWJ-52763 and its metabolites. Formation of these metabolites in the human hepatic S9 can be explained by two metabolic pathways: (1) N/O-dealkylation, and (2) phenylhydroxylation. Pathway 1 appeared to be the most important pathway, forming one major and two metabolites, N-desmethoxyethyl-RWJminor 52763 (M1, 22% of the sample), O-desmethyl-RWJ-52763 (M2; 2%), and N,N-didesmethoxyethyl-RWJ-52763 (M3, 3%). Pathway 2 produced two minor phenylhydroxylated metabolites, hydroxydifluorophenyl-RWJ-52763 (M4, 4%) and hydroxybenzimidazole-RWJ-52763 (M5: 3%). and in conjunction with pathway 1 formed a trace metabolite, hydrox-M1 (M6, 1%). The proposed in vitro metabolic pathways for RWJ-52763 in human hepatic S9 fraction are depicted in Fig. 4. In conclusion, RWJ-52763 is substantially metabolized in human hepatic S9 fraction.

References

- B.E. Maryanoff, W. Ho, D.F. McComsey, A.B. Reitz, P.P. Grous, S.O. Nortey, R.P. Shank, B. Dubinsky, R.J. Taylor, Jr, J.F. Gardocki, J. Med. Chem. 38 (1995) 16–20.
- [2] B.E. Maryanoff, D.F. McComsey, W. Ho, R.P. Shank, B. Dubinsky, Bioorg. Med. Chem. Lett. 6 (1996) 333–338.
- [3] B.E. Maryanoff, S.O. Nortey, J.J. McNally, P.J. Sanfilippo, D.F. McComsey, B. Dubinsky, R.P. Shank, A.B. Reitz, Bioorg. Med. Chem. Lett. 9 (1999) 1547–1552.
- [4] M.K. Scott, D.A. Demeter, S.O. Nortey, B. Dubinsky, R.P. Shank, A.B. Reitz, Progress in Med. Chem., Elsevier Science, Amsterdam, Vol. 36 1999, pp. 169–200.
- [5] W.N. Wu, L.A. McKown, J.L. Melton, D.M. Isaacson, A.R. Takacs, A.B. Reitz, ISSX Proceedings 1(1996) Abstract # 344, The Seventh North American ISSX Meeting.
- [6] . W.N. Wu, L.A. McKown, J.L. Melton, A.B. Reitz, J. Pharm. and Biomed. Analy. (2002, in submission).
- [7] W.N. Wu, L.A. McKown, A.B Reitz, A.R. Takacs, Pharm. SciTM. 1 (1998) PS36.
- [8] W.N. Wu, L.A. McKown, ISSX Proceedings 15(1999) Abstract #174, The Ninth North American ISSX Meeting.
- [9] L.A. McKown, W.N. Wu, A.B. Reitz, Drug Metab. Rev. 32 (2000) 252 (The Tenth North American ISSX Meeting Abstract # 231).
- [10] W.N. Wu, L.A. McKown, A.B. Reitz, Drug Metab. Rev. 32 (2000) 252 (The Tenth North American ISSX Meeting Abstract # 232).

- [11] W.N Wu, L.A. McKown, M.D. Moyer, A.B. Reitz, ISSX Proceedings 15 (1999) Abstract # 425, The Ninth North American ISSX Meeting.
- [12] W.N. Wu, L.A. McKown, A.J. Streeter, A.R. Takacs, A.B. Reitz, The 12th International Symposium on Microsomes and Drug Oxidations (1998) Abstract # 107.
- [13] W.N. Wu, L.A. McKown, A.R. Takacs, The 12th International Symposium on Microsomes and Drug Oxidations (1998) Abstract# 108.
- [14] W.N. Wu, L.A. McKown, A.B. Reitz, Drug Metab. Rev. 33 (2001) 122 (The Sixth International ISSX Meeting Abstract#241).